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 A Note Before We Begin

If this is your first venture into the Life of Fred series, a
little introduction is needed.  This is Fred.  He has been teaching
at KITTENS University for about six years now.  Before this
semester he had taught all the undergraduate courses in the math
department except numerical analysis.

His teaching style has made him internationally famous.  Students
from around the world have flocked to KITTENS so that they could
experience the human touch that Fred offers.  This will all become clear as
you read Chapter one.  

Math majors at most major universities require a course in
numerical analysis.  In all the other math courses, you found exact
answers.  In calculus you learned that the derivative of x 6  was 6x 5 .  You
learned that the antiderivative of sec 2 x was tan x + C.  

You were taught a half dozen different approaches to finding the

exact value of ∫ f(x) dx.  What you weren’t taught was that you can only

find the definite integral of less than 1% of all functions.  With numerical

analysis you will find the value of ∫
1

          x = 0

     1     
         1 + x 3  

  dx, which no calculus

student can do.
In algebra you were taught how to solve linear equations and

quadratic equations.  But what about quintic (5th power) equations?  
Or how about solving x x  = 5?  
The good news is that numerical analysis will allow you to solve

virtually all of these problems.  You will be able to solve most second-
order differential equations, not just the special cases that you learned in
calculus.

The bad news is that the answers you get in numerical analysis are
only approximations.  

The good news is that these approximations will be given to you
with as many decimal places as you desire.  If you are working in the
muddy world of things, you don’t need 100 decimal places in your answer. 
Do cabinet makers work with tolerances of a hundred of an inch? 
Probably not.  Do bankers need more than four or five decimal places to
play with money?  I hope not.  Do physicists need more than a dozen
decimal places in their answers?  If they do, you can give them 40 decimal
places.  
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In this world of applied mathematics, you will be able to work with
a zillion more kinds of problems than you ever could in pure math.  A
whole new world will open up.
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Chapter One
 Pure Mathematics

F
red lives in room 314 on the third floor of the Math Building on the
KITTENS University campus.  He has exactly one doll, Kingie.✶ 
The story of how Fred began teaching at KITTENS at the age of nine

months is told in Life of Fred: Calculus Expanded Edition.  Fred is now
six years old.

Fred is a pure mathematician.  He has taught only
pure mathematics: arithmetic,

          algebra,

             geometry,

                trig,

                   calculus,

          logic,

             set theory, and so on.

Things are solid.  What is, is.  What isn’t, isn’t.  x – x always
equals zero.  His room number is 314 exactly.  Not 314.15926.  He has
exactly one doll.  

In geometry if you have a right triangle with the
legs both equal to one, then the hypotenuse must exactly
equal √2 .  

In logic if you know P is true and you know that 
P ⇒ Q, then Q must be true.

In set theory if set A = {✐, ✈, ☎}, then the cardinality of A must
be 3, not 2.98.  (Cardinality is the number of elements in a set.)

In trig sin 30º = 0.5.  The side opposite a 30º angle in a right
triangle is exactly half the length of the hypotenuse.

In algebra when Fred factored 10x 2  + 13x – 3 into (2x + 3)(5x – 1)
he felt that his world was as clear as a flawless diamond.

✶ Kingie is pronounced KING-ee.
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Chapter  One          Pure Mathematics

In short, Fred was happy in his world of pure mathematics.  

A knock on his office door.  It was Joe, one of his students.  Joe
always had a different view of math.  This may sound strange, but Joe
wanted to use Fred’s pure mathematics.  

“I have a question,” Joe began.  He always started that way.  He
figured that if he said that, his listener would have to pay more attention to

his words.  Given his prolixity✴ he needed all the
help he could get.  “As you know, I like to go
fishing.  I measured it.  The height of my mast is
equal to 1✴✴  And the length from the front of my
boat (what everyone else calls the bow) to the foot
of the mast is also 1.  Let the length of the wire
from the front of the boat to the top of the mast be
equal to x.”

Fred nodded and mentally computed that the length of the wire, x, 
must be equal to √2 .

Joe had forgotten about the Pythagorean theorem.  He just
measured the wire and found that it was 1.4.  He announced to Fred that 
x = 1.4

But √2 ≠ 1.4.  You can check that by computing 1.4 2 , which
equals 1.96.

So x – x doesn’t equal zero in this case.  Joe’s x ≠ Fred’s x.

The problem was that Fred was living in the crystal world of pure
math and Joe was in the muddy world of things. 

Joe’s drawing

✴ Some people call him a wordy-birdie.  Others say he’s a blabbermouth.  

✴✴ I’m omitting the units.  Then I don’t have to get in the controversy over
metric vs. the imperial system.  If you absolutely must need to know, Joe’s
mast is 1 dekameter tall.  (= 10 meters)  In British English it’s deca.
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Chapter  One          Pure Mathematics

When Joe’s girlfriend Darlene measured the wire, she found that 
x = 1.4142.  Her eyes were much better than Joe’s.  She also lives in the
muddy world of things.  And 1.4142 2  equals 1.9999616, but this is also far
short of 2. 

In the muddy world of things, it is common that x – x ≠ 0.

Joe explained to Fred (gasp!✴) that x is actually about 1.5, since
you needed a little extra wire to tie each end.  

Here are two major facts about the world of pure math and the
muddy world of things:

Fact #1  Fred’s pure math is unreasonably effective in the muddy world
of things.  

Why should the things we compute in our heads have any
relationship to what happens out there in the everyday world?  

Fred taught his arithmetic students that if you wait 2 minutes and
then wait 3 more minutes, you will have waited a total of 5 minutes.✴✴ 
When you travel 3 feet/sec for 5 seconds, you will go 15 feet.  d = rt 
When you do calculus and compute the area under one arc of y = sin x,
you get 2.  When you
draw the graph and
make little squares and
measure the area, it
turns out to be pretty
close to 2 depending
on how accurately you
draw your graph.  

You don’t have to read any of these “Asides” in this book. 
I’m writing them for my entertainment or to include review
material or to solve messy equations that no human
should have to read.

A n  Aside

∫
π

    x = 0

sin x dx  =  –cos x 


 π

              0

  =  1 + 1  =  2

✴ I never thought I’d ever write those four words.  Would you like to
explain physics to Einstein or music to Mozart?

✴✴ Seconds, minutes, and hours are in both the metric and imperial
systems. 
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Chapter  One          Pure Mathematics

But why does it work?  There is no law that what we think should
have some correspondence to the muddy world of things.  

In economics, sociology, or political science, there is often strong
disagreement—opposing theories about the muddy world of things.  

In mathematics there is much more peace.  Where math intersects
with the outside world, it is usually pretty easy to check whether 2 + 2
equals 4 or equals 5.  

Fact #2  The world of pure math is a teeny tiny bit of all of reality.  All the
stuff you learned from Fred in algebra, geometry, and calculus is virtually
never encountered in real
life.

In geometry: Have you ever
seen a circle in the muddy

world of things?  Is a pizza
ever a perfect circle?

Have you ever
encountered an isosceles
triangle?  If one side is
exactly 5.38, what are the
chances that a second side
will be exactly 5.38?  The
chances are less than 0.000000000000000000000000000000000001%.

The second side might be 5.380000000000007 or

            5.38000000000000006 or

                                         5.38000000000003987 or

           5.3800000000000000000000000076.

One fun exercise is to list a billion numbers that are between 5.38
and 5.381.  One way that you might not have seen before is:

5.3801
5.38012
5.380123
5.3801234
. . .
5.38012345678
5.380123456789
5.38012345678910
5.3801234567891011
5.380123456789101112
. . .
5.380123456789101112131415 . . .98
5.380123456789101112131415 . . .98 99
5.380123456789101112131415 . . .98 99100   and so on.

A n  Aside
    Fred would say that all the things he
has taught are “real life.”  They are the
things that are eternally true.  They are
the things that can be relied on.
    It is the things in the muddy world that
are transitory.  This muddy world is the
Shadowlands, to steal C.S. Lewis’s
word.
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Chapter  One          Pure Mathematics

In algebra: Fred taught you how to factor ax 2  + bx + c where a, b, and c are
integers.  (In symbols: a, b, c ε Z.)

He never mentioned that virtually no quadratic polynomial with
integer coefficents is factorable.  Viz.✴ if a, b, and c are selected at random
from {. . . –3, –2, –1, 0, 1, 2, 3 . . .} the chances that ax 2  + bx + c will
factor is less than the chances that next January 4th you will be in St. Louis
and will be hit by a thirty-pound fish dropped by a pigeon who used to be a
pet of the youngest descendant of George Washington Carver.  

Just at random I’ll pick one:  3909929369948887x² + 79979239696969222005x + 5648713514644463.

I bet that won’t factor.  

There are only a hundred or so “nice” quadratic polynomials that
will factor.  Every author of a beginning algebra book takes their examples
from this small list.  

In trig: Do you ever get an angle of exactly π/6 (= 60º) when you cut a
pizza into six equal pieces?  Never.  

In calculus: Joe’s favorite food is jelly beans.  He throws one up in the air
and catches it in his mouth as it falls.  He throws it upward at a rate of 
3 m/sec.  One favorite calculus question is, “How high the jelly bean will
go?”

One question in numerical analysis is, “Will the jelly bean ever be
traveling at exactly 2 m/sec?” 

 

Your Turn to Play

1.  Well . . . will it ever travel at exactly 2 m/sec?  

2.  Let’s see how much algebra you were taught.  Almost everyone knows
that you can solve any quadratic equation using the quadratic formula.  Is
there a formula for cubic equations (3rd degree), quartic equations 
(4th degree), quintic equations (5th degree) and so on?

✴ Viz. is the abbreviation for videlicet.  Videlicet is Latin for “that is to
say” or “namely.”  Pronounced: wi-DAY-li-ket, where i is pronounced like
the i in if or big.
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Chapter  One          Pure Mathematics

Happy Thought
Virtually all the math in numerical analysis 

is easier than the stuff in calculus.

. . . . . . . C O M P L E T E   S O L U T I O N S  . . . . . . .

1.  You may be surprised to find out that the answer is yes.  There will be a
time when the jelly bean is traveling at exactly 2 m/sec.  

First of all, velocity of a jelly bean is a continuous function.  There are
no jumps in the graph.  It can’t be traveling at 0.5m/sec and an instant later
be traveling at 0.4m/sec. 

  

Back in calculus, one of the main theorems was the Mean Value
Theorem: If f is continuous on the interval [a, c] and differentiable on 
(a, c), then there is at least one point u in the interval in which    
f  ́(u)   =  f(c) – f(a) 

       c – a
That was not easy to understand.  Roughly translated, it says that if you

are going from point a to point c and f (x) represents your location, then
there has to be a point u on your trip where your velocity at u, f  ́ (u), is
equal to your average velocity over the whole trip, which is  
  f(c) – f(a) 
       c – a     

 .

The much easier theorem is the Intermediate Value Theorem: If f is
continuous on the interval [a, c], and v is any value between f(a) and f(c),
then there must be a u in (a, c) such that f(u) = v.

Translation: If you are going from point a to point c, then every
velocity between f(a) and f(c) must occur at least once.

Re-translation: If you are going 3 m/sec at the start 
of your trip and 0 m/sec later in your trip, then at some 
moment you must have been traveling at 2 m/sec.
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Chapter  One          Pure Mathematics

Re-re-translation: The IVT (Intermediate Value
Theorem) states that if you start to bake at pizza at
11 a.m. at 35º, and at noon it’s 475º, then at some
point between 11 and noon it will be exactly 243º.

In symbols: Given (11, 35º) and (12, 475º), then
there exists a u such that 11 < u < 12 and (u, 243º).

The IVT was proved in Chapter 6 of Life of Fred: Real Analysis.  But
even this theorem is too complicated for numerical analysis.  We are going
to use a simplified version of the IVT.  

2.  One of the real delights of mathematics is the surprises that
occasionally pop up.  

Every beginning algebra student can solve any linear equation: first
degree polynomials such as 89x – 12 = 57.

Every advanced algebra student can solve any quadratic equation:
second degree polynomials such as 5x 2  – 46x + 7 = 0, using the quadratic
formula.  The formula takes roots of sums of products of the coefficients.

Most mathematicians know of the cubic formula that can solve any
cubic equation.  It uses only roots and the arithmetic operations of
addition, subtraction, multiplication, and division.  Tartaglia found the
formula in the early 1500s.  It is complicated.  

About 25 years later Ferrari found the quartic formula that can solve
any 4th degree equation.  

Here is the summary so far . . .   
1st degree (linear) We can solve any equation.
2nd degree (quadratic) We can solve any equation.
3rd degree (cubic) We can solve any equation.
4th degree (quartic) We can solve any equation.

Do you detect a pattern?  Much of the work of mathematicians is
finding patterns.

On the next page is the full chart for solving any polynomial equation.
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Chapter  One          Pure Mathematics

Full Chart for Solving Polynomial Equations with Integer Coefficients   
1st degree We can solve any equation.
2nd degree We can solve any equation.
3rd degree We can solve any equation.
4th degree We can solve any equation.
5th degree No formula exists or will ever exist to solve every equation!
6th degree No formula exists or will ever exist to solve every equation!
7th degree No formula exists or will ever exist to solve every equation!
8th degree No formula exists or will ever exist to solve every equation!
9th degree No formula exists or will ever exist to solve every equation!
10th degree No formula exists or will ever exist to solve every equation!
and so on.

Why?  I don’t know.  It’s a mystery.  

We can draw a line between any two points, but not every three.   
2 is a magic number.

We can make three lines all mutually perpendicular to each other, but
not four.   
3 is a magic number.

We can solve 1st, 2nd, 3rd, and 4th degree equations, but not 5th degree.  
4 is a magic number.

We can find five regular Platonic solids, but not six.
5 is a magic number.

Platonic solids have faces that are all identical, and the same number
of faces meet at each vertex (corner).
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