Life of Fred ${ }^{\circ}$
 ONumerical OAnalysis

Stanley F. Schmidt, Ph.D.

Polka Dot Publishing

AA OVAte Before ONe Begin

If this is your first venture into the Life of Fred series, a little introduction is needed. This is Fred. He has been teaching at KITTENS University for about six years now. Before this
 semester he had taught all the undergraduate courses in the math department except numerical analysis.

His teaching style has made him internationally famous. Students from around the world have flocked to KITTENS so that they could experience the human touch that Fred offers. This will all become clear as you read Chapter one.

Math majors at most major universities require a course in numerical analysis. In all the other math courses, you found exact answers. In calculus you learned that the derivative of x^{6} was $6 x^{5}$. You learned that the antiderivative of $\sec ^{2} x$ was $\tan x+C$.

You were taught a half dozen different approaches to finding the exact value of $\int f(x) d x$. What you weren't taught was that you can only find the definite integral of less than 1% of all functions. With numerical analysis you will find the value of $\int_{x=0}^{1} \frac{1}{1+x^{3}} d x$, which no calculus student can do.

In algebra you were taught how to solve linear equations and quadratic equations. But what about quintic ($5^{\text {th }}$ power) equations?

Or how about solving $x^{x}=5$?
The good news is that numerical analysis will allow you to solve virtually all of these problems. You will be able to solve most secondorder differential equations, not just the special cases that you learned in calculus.

The bad news is that the answers you get in numerical analysis are only approximations.

The good news is that these approximations will be given to you with as many decimal places as you desire. If you are working in the muddy world of things, you don't need 100 decimal places in your answer. Do cabinet makers work with tolerances of a hundred of an inch? Probably not. Do bankers need more than four or five decimal places to play with money? I hope not. Do physicists need more than a dozen decimal places in their answers? If they do, you can give them 40 decimal places.

In this world of applied mathematics, you will be able to work with a zillion more kinds of problems than you ever could in pure math. A whole new world will open up.

Contents

Chapter 1 Pure Mathematics 15Pure math is unreasonably effective in the worldPure math can not solve most problems
Chapter $2 \quad$ Solving $\mathrm{f}(\mathrm{x})=0$. 23Why eight decimal places is usually plentyThe bisection methodThe Intermediate Value theorem of calculus
Chapter 3 Using the Bisection Method in the Muddy World. 31
Write a computer program to do thatThings that drive a computer crazy
Chapter $4 \quad$ Solving $\mathrm{f}(\mathrm{x})=5$. 37
How to solve $x^{x}=5$
Chapter 5 A Change in Fred's Life. 41Fred drafted into teaching numerical analysis
Chapter 6 Where Two Curves Intersect. 45Solving $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$Finding the points of discontinuity for
$\frac{x^{67}-39696 x^{49}+8.979 x^{35}+\sqrt{3} x^{25}+\pi x^{17}+(\ln 5) x^{6}}{5 x^{38}-6 x^{31}-x^{8}+17}$
Chapter 7 Iteration 49
Finding the value of ${ }_{\cos s(\cos (\cos (\cos (\cos (\cos (\cos (\cos (\cos)(\cos (\cos (\cos (\cos)}$ $(\cos (\cos (\mathrm{x}))))))))))$
Chapter 8 Secant Method 57The Seven Wonders of the Ancient WorldThe Colossus of Rhodes FredFinding the intersection of the line joining (a, b) and(c, d) and the x -axis
Chapter 9 Using the Secant Method 61
Because it takes fewer steps
Chapter 10 Newton Method. 65When you can't find points on both sides of thex-axis or you only have one pointCan be blindingly fast
Chapter 11 Five Points and no $f(x)$ 75
When you aren't given the function Finding the polynomial to interpolate
Chapter 12 Avoiding Some of the Algebra. 82
Simplifying the (Lagrange) polynomial using Newton's divided differences
Chapter $13 \quad 900$ Points and no $f(x)$. 95You can't use Newton's divided differences here$899^{\text {th }}$ degree polynomials can be very sensitive
Chapter 14 Splines. 100
Fitting a cubic polynomial between every 3 points101 points $\Rightarrow 400$ equations to solve
Chapter 15 Piecewise Polynomial Approximations. 103
The natural spline and Newton's divided differencesNo equations to solve
Chapter 16 Why Do Integration? 108
A zillion reasons from everyday life
Chapter 17 Why Do Numerical Integration?. 113
Can't always find the antiderivative
Chapter 18 How to Do Numerical Integration. 115
When you have less than a half dozen points
When you have lots of points not equally spaced
Chapter 19 Numerical Integration with Equally Spaced Intervals. 119
In one step-Simpson's rule
Chapter 20 Why Simpson's Rule Is True. 128
First attempt to prove itSecond attemptErrors and the big O notation
Chapter 21 Numerical Differentiation. 134
When taking the derivative is messy
When you only have points and not the function
Chapter 22 Monte Carlo Methods. 137
Both quick and dirty
Tests for randomness
Chapter 23 Monte Carlo and Joe's Dance. 149
Random walk behavior
Brownian motion
Chapter 24 Differential Equations-the Prelude. 153
You find differential equations almost everywhereHow Fred was a pirate, ran a railroad, and wasmarried for 50 years
Chapter 25 Fred's Field Guide to Differential Equations. 158
The many kinds of differential equations
Chapter 26 First-order Ordinary Differential Equations... 160
We start with $\mathrm{y}^{\prime}=\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ for some function g , $f\left(x_{0}\right)=y_{0}$ for some particular numbers x_{0} and y_{0}. We find $f(b)$ for any number b.
Chapter 27 First-order ODE with $\mathrm{y}^{\prime}=\mathrm{g}(\mathrm{x}, \mathrm{y})$. 164Euler's method
Chapter 27½ Runge-Kutta Method. 170A minor change to Euler's methodAdams-Bashforth method
Chapter 28 Second-order ODEs 175Requires two auxiliary conditionsThird-order is a direct extension of second-order
Chapter 281⁄2 Second-order ODEs Boundary Value Problems (BVP).. 180
How they differ from initial value problems (IVP)
Using the IVP to solve the BVPa two-step procedure
Chapter 29 Partial Differential Equations (PDE) 187Given a region, a PDE, and auxiliary conditionsFind a value of the function in the regionThree kinds of PDEs:parabolic, elliptic, and hyperbolic
Chapter 30 Parabolic PDEs. 192
Marching through the region using a formula
Chapter 31 Elliptic PDEs 197No marchingInstead you get a bunch of equations to solve
Chapter 32 Hyperbolic PDEs. 200
Needs extra auxiliary conditions Then we can march through the region
Index. 205

Chapter One

Pure ONathematics

Fred lives in room 314 on the third floor of the Math Building on the KITTENS University campus. He has exactly one doll, Kingie.* The story of how Fred began teaching at KITTENS at the age of nine months is told in Life of Fred: Calculus Expanded Edition. Fred is now six years old.

Fred is a pure mathematician. He has taught only pure mathematics: arithmetic,

```
algebra,
geometry,
trig,
calculus,
logic,
set theory, and so on.
```


Things are solid. What is, is. What isn't, isn't. $\mathrm{x}-\mathrm{x}$ always equals zero. His room number is 314 exactly. Not 314.15926 . He has exactly one doll.

In geometry if you have a right triangle with the legs both equal to one, then the hypotenuse must exactly equal $\sqrt{2}$.

In logic if you know P is true and you know that $\mathrm{P} \Rightarrow \mathrm{Q}$, then Q must be true.

In set theory if set $\mathrm{A}=\{\boldsymbol{\rightarrow}, \boldsymbol{\triangleleft}\}$, then the cardinality of A must be 3 , not 2.98 . (Cardinality is the number of elements in a set.)

In trig $\sin 30^{\circ}=0.5$. The side opposite a 30° angle in a right triangle is exactly half the length of the hypotenuse.

In algebra when Fred factored $10 x^{2}+13 x-3$ into $(2 x+3)(5 x-1)$ he felt that his world was as clear as a flawless diamond.

[^0]
Chapter One Pure OHathematics

In short, Fred was happy in his world of pure mathematics.
A knock on his office door. It was Joe, one of his students. Joe always had a different view of math. This may sound strange, but Joe wanted to use Fred's pure mathematics.
"I have a question," Joe began. He always started that way. He figured that if he said that, his listener would have to pay more attention to his words. Given his prolixity* he needed all the

Joe's drawing help he could get. "As you know, I like to go fishing. I measured it. The height of my mast is equal to $1^{* *}$ And the length from the front of my boat (what everyone else calls the bow) to the foot of the mast is also 1 . Let the length of the wire from the front of the boat to the top of the mast be equal to x."

Fred nodded and mentally computed that the length of the wire, x , must be equal to $\sqrt{2}$.

Joe had forgotten about the Pythagorean theorem. He just measured the wire and found that it was 1.4. He announced to Fred that $\mathrm{x}=1.4$

But $\sqrt{2} \neq 1.4$. You can check that by computing 1.4^{2}, which equals 1.96.

So $\mathrm{x}-\mathrm{x}$ doesn't equal zero in this case. Joe's $\mathrm{x} \neq$ Fred's x .
The problem was that Fred was living in the crystal world of pure math and Joe was in the muddy world of things.

[^1]
Chapter One Pure Ollathematics

When Joe's girlfriend Darlene measured the wire, she found that $x=1.4142$. Her eyes were much better than Joe's. She also lives in the muddy world of things. And 1.4142^{2} equals 1.9999616 , but this is also far short of 2 .

In the muddy world of things, it is common that $\mathrm{x}-\mathrm{x} \neq 0$.
Joe explained to Fred (gasp! ${ }^{*}$) that x is actually about 1.5 , since you needed a little extra wire to tie each end.

Here are two major facts about the world of pure math and the muddy world of things:
[TSTM Fred's pure math is unreasonably effective in the muddy world of things.

Why should the things we compute in our heads have any relationship to what happens out there in the everyday world?

Fred taught his arithmetic students that if you wait 2 minutes and then wait 3 more minutes, you will have waited a total of 5 minutes. ${ }^{* *}$ When you travel 3 feet/sec for 5 seconds, you will go 15 feet. $d=r t$ When you do calculus and compute the area under one arc of $y=\sin x$, you get 2. When you draw the graph and make little squares and measure the area, it turns out to be pretty close to 2 depending on how accurately you draw your graph.

You don't have to read any of these "Asides" in this book. I'm writing them for my entertainment or to include review material or to solve messy equations that no human should have to read.

$$
\mathcal{A n}_{n} \text { Aside }
$$

$\left.\int_{x=0}^{\pi} \sin x d x=-\cos x\right]_{0}^{\pi}=1+1=2$ explain physics to Einstein or music to Mozart?

[^2]
Chapter One Pure ellathematics

But why does it work? There is no law that what we think should have some correspondence to the muddy world of things.

In economics, sociology, or political science, there is often strong disagreement-opposing theories about the muddy world of things.

In mathematics there is much more peace. Where math intersects with the outside world, it is usually pretty easy to check whether $2+2$ equals 4 or equals 5 .

Foci ${ }^{\circ}$) The world of pure math is a teeny iny bit of all of reality. All the stuff you learned from Fred in algebra, geometry, and calculus is virtually never encountered in real life.
In geometry: Have you ever seen a circle in the muddy world of things? Is a pizza ever a perfect circle?

Have you ever encountered an isosceles triangle? If one side is exactly 5.38 , what are the

$$
\mathcal{A}_{n} \mathcal{A l s i d e}^{2}
$$

Fred would say that all the things he has taught are "real life." They are the things that are eternally true. They are the things that can be relied on.

It is the things in the muddy world that are transitory. This muddy world is the Shadowlands, to steal C.S. Lewis's word. chances that a second side will be exactly 5.38 ? The chances are less than $0.000000000000000000000000000000000001 \%$.

The second side might be 5.380000000000007 or

$$
\begin{gathered}
5.38000000000000006 \text { or } \\
5.38000000000003987 \text { or } \\
5.3800000000000000000000000076 .
\end{gathered}
$$

One fun exercise is to list a billion numbers that are between 5.38
and 5.381 . One way that you might not have seen before is:

```
5 . 3 8 0 1
5.38012
5.380123
5.3801234
5.38012345678
5.380123456789
5.38012345678910
5.3801234567891011
5.3801234567891011112

In algebra: Fred taught you how to factor \(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\) where \(\mathrm{a}, \mathrm{b}\), and c are integers. (In symbols: \(\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}\).)

He never mentioned that virtually no quadratic polynomial with integer coefficents is factorable. Viz.* if \(\mathrm{a}, \mathrm{b}\), and c are selected at random from \(\{\ldots-3,-2,-1,0,1,2,3 \ldots\}\) the chances that \(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\) will factor is less than the chances that next January \(4^{\text {th }}\) you will be in St. Louis and will be hit by a thirty-pound fish dropped by a pigeon who used to be a pet of the youngest descendant of George Washington Carver.

Just at random I'll pick one: \(3909929369948887 \mathrm{x}^{2}+79979239696969222005 \mathrm{x}+5648713514644463\). I bet that won't factor.

There are only a hundred or so "nice" quadratic polynomials that will factor. Every author of a beginning algebra book takes their examples from this small list.

In trig: Do you ever get an angle of exactly \(\pi / 6\left(=60^{\circ}\right)\) when you cut a pizza into six equal pieces? Never.

In calculus: Joe's favorite food is jelly beans. He throws one up in the air and catches it in his mouth as it falls. He throws it upward at a rate of \(3 \mathrm{~m} / \mathrm{sec}\). One favorite calculus question is, "How high the jelly bean will go?"

One question in numerical analysis is, "Will the jelly bean ever be traveling at exactly \(2 \mathrm{~m} / \mathrm{sec}\) ?"

\section*{Gour Turnco Play}
1. Well . . . will it ever travel at exactly \(2 \mathrm{~m} / \mathrm{sec}\) ?
2. Let's see how much algebra you were taught. Almost everyone knows that you can solve any quadratic equation using the quadratic formula. Is there a formula for cubic equations ( \(3^{\text {rd }}\) degree), quartic equations ( \(4^{\text {th }}\) degree), quintic equations ( \(5^{\text {th }}\) degree) and so on?

\footnotetext{
* Viz. is the abbreviation for videlicet. Videlicet is Latin for "that is to say" or "namely." Pronounced: wi-DAY-li-ket, where i is pronounced like the i in if or big.
}

\section*{.-....-COMPLETESOLUTIONS ........}
1. You may be surprised to find out that the answer is yes. There will be a time when the jelly bean is traveling at exactly \(2 \mathrm{~m} / \mathrm{sec}\).

First of all, velocity of a jelly bean is a continuous function. There are no jumps in the graph. It can't be traveling at \(0.5 \mathrm{~m} / \mathrm{sec}\) and an instant later be traveling at \(0.4 \mathrm{~m} / \mathrm{sec}\).

\author{
Happy Thought \\ Virtually all the math in numerical analysis \\ is easier than the stuff in calculus.
}

Back in calculus, one of the main theorems was the Mean Value Theorem: If f is continuous on the interval \([\mathrm{a}, \mathrm{c}]\) and differentiable on ( \(\mathrm{a}, \mathrm{c}\) ), then there is at least one point u in the interval in which \(f^{\prime}(u)=\frac{f(c)-f(a)}{c-a}\)

That was not easy to understand. Roughly translated, it says that if you are going from point a to point \(c\) and \(f(x)\) represents your location, then there has to be a point \(u\) on your trip where your velocity at \(u, f^{\prime}(u)\), is equal to your average velocity over the whole trip, which is
\[
\frac{f(c)-f(a)}{c-a} .
\]

The much easier theorem is the Intermediate Value Theorem: If f is continuous on the interval [a, c], and \(v\) is any value between \(f(a)\) and \(f(c)\), then there must be au in \((\mathrm{a}, \mathrm{c})\) such that \(\mathrm{f}(\mathrm{u})=\mathrm{v}\).

Translation: If you are going from point a to point c , then every velocity between \(f(a)\) and \(f(c)\) must occur at least once.

Re-translation: If you are going \(3 \mathrm{~m} / \mathrm{sec}\) at the start of your trip and \(0 \mathrm{~m} / \mathrm{sec}\) later in your trip, then at some moment you must have been traveling at \(2 \mathrm{~m} / \mathrm{sec}\).


Re-re-translation: The IVT (Intermediate Value Theorem) states that if you start to bake at pizza at 11 a.m. at \(35^{\circ}\), and at noon it's \(475^{\circ}\), then at some point between 11 and noon it will be exactly \(243^{\circ}\).

In symbols: Given \(\left(11,35^{\circ}\right)\) and \(\left(12,475^{\circ}\right)\), then there exists a \(u\) such that \(11<\mathrm{u}<12\) and \(\left(\mathrm{u}, 243^{\circ}\right)\).


The IVT was proved in Chapter 6 of Life of Fred: Real Analysis. But even this theorem is too complicated for numerical analysis. We are going to use a simplified version of the IVT.

\section*{2. One of the real delights of mathematics is the surprises that} occasionally pop up.

Every beginning algebra student can solve any linear equation: first degree polynomials such as \(89 x-12=57\).

Every advanced algebra student can solve any quadratic equation: second degree polynomials such as \(5 x^{2}-46 x+7=0\), using the quadratic formula. The formula takes roots of sums of products of the coefficients.

Most mathematicians know of the cubic formula that can solve any cubic equation. It uses only roots and the arithmetic operations of addition, subtraction, multiplication, and division. Tartaglia found the formula in the early 1500 s . It is complicated.

About 25 years later Ferrari found the quartic formula that can solve any \(4^{\text {th }}\) degree equation.

Here is the summary so far . . .
\(1^{\text {st }}\) degree (linear) We can solve any equation.
\(2^{\text {nd }}\) degree (quadratic) We can solve any equation.
\(3^{\text {rd }}\) degree (cubic) We can solve any equation.
\(4^{\text {th }}\) degree (quartic) We can solve any equation.

Do you detect a pattern? Much of the work of mathematicians is finding patterns.

On the next page is the full chart for solving any polynomial equation.

\section*{Chapter One Pure Ollathematics}

\section*{Full Chart for Solving Polynomial Equations with Integer Coefficients}
\(1^{\text {st }}\) degree \(\quad\) We can solve any equation.
\(2^{\text {nd }}\) degree \(\quad\) We can solve any equation.
\(3{ }^{\text {rd }}\) degree \(\quad\) We can solve any equation.
\(4^{\text {th }}\) degree \(\quad\) We can solve any equation.
\(5^{\text {th }}\) degree \(\quad\) No formula exists or will ever exist to solve every equation!
\(6^{\text {th }}\) degree \(\quad\) No formula exists or will ever exist to solve every equation!
\(7^{\text {th }}\) degree \(\quad\) No formula exists or will ever exist to solve every equation!
\(8^{\text {th }}\) degree \(\quad\) No formula exists or will ever exist to solve every equation!
\(9^{\text {th }}\) degree \(\quad\) No formula exists or will ever exist to solve every equation!
\(10^{\text {th }}\) degree \(\quad\) No formula exists or will ever exist to solve every equation! and so on.

Why? I don't know. It's a mystery.

We can draw a line between any two points, but not every three.
2 is a magic number.
We can make three lines all mutually perpendicular to each other, but not four.
3 is a magic number.
We can solve \(1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}\), and \(4^{\text {th }}\) degree equations, but not \(5^{\text {th }}\) degree. 4 is a magic number.

We can find five regular Platonic solids, but not six.
5 is a magic number.

Platonic solids have faces that are all identical, and the same number of faces meet at each vertex (corner).


\section*{Ondex}
5th degree equations cannot be solved in general. ..... 22, 103
Adams-Bashforth method. ..... 173
adaptive Runge-Kutta. ..... 172
big O notation. ..... 133, 170
bisection method. ..... 25, 27, 28
using it. ..... 31
Boole's rule. ..... 123
Brownian motion ..... 149
converses. ..... 180, 181
\(\cos (\cos (\cos x)))\). ..... 51
differential equations
Adams-Bashforth method ..... 173
adaptive Runge-Kutta. ..... 172
Euler's method ..... 166
first order ordinary. ..... 160
first order partial. ..... 164
how they are solved in calculus. ..... 155
multi-step methods ..... 173
order of a DE. ..... 159
Runge-Kutta ..... 170
second order ..... 175
uses ..... 153, 154
various types ..... 158, 159
elliptic differential equations. ..... 197
five-point scheme ..... 198
Laplace equation. ..... 197
Poisson equation ..... 199
equations of a line. ..... 60
explicit vs. implicit. ..... 200
finding a career, a spouse, or a house ..... 66
five regular Platonic solids ..... 22
four likeable laws of logs. ..... 74
hardware random number generators ..... 144
heat equation. ..... 193

\section*{Ondex}
hyperbolic partial differential equations. ..... 200
stability ..... 201
wave equation ..... 202
integration
why do it. ..... 108
Intermediate Value Theorem. ..... 21, 27
interpolant. ..... 77
invisible gray snake ..... 26
iterated functions ..... 51
Lagrange interpolating polynomial. ..... 79
in pi and sigma notation. ..... 81
lattice. ..... 192
linearly convergent ..... 72
Monte Carlo methods ..... 137
using Monte Carlo to sample. ..... 147
using Monte Carlo to simulate ..... 147
Newton Cotes three point formula ..... 122
Newton method. ..... 65
flamingo. ..... 69
Newton's divided differences. ..... 83
nodes ..... 77
numerical differentiation. ..... 134
numerical integration
how to do it. ..... 115
why do it ..... 113
with equally spaced intervals. ..... 119
parabolic differential equations. ..... 192
stability. ..... 196
partial differential equations. ..... 187
various types ..... 189, 190
points of discontinuity ..... 46
polynomial through some points ..... 76
pseudo random numbers ..... 143
pure math is a tiny bit of all of reality. ..... 18
pure math is unreasonably effective ..... 17

\section*{Cndex}
quadratically convergent ..... 72
random numbers. ..... 141
frequency test. ..... 142
gap test. ..... 143
predictability test. ..... 142
serial test. ..... 142
random walk motion. ..... 149
reading vs. lectures. ..... 156, 157
reduplication. ..... 45
regula falsi ..... 63
Runge-Kutta ..... 170
secant method. ..... 57
using it. ..... 61
second-order differential equations ..... 175
initial value vs. boundary value. ..... 180
shooting method. ..... 183
Seven Wonders of the Ancient World. ..... 57
Simpson's \(3 / 8\) rule ..... 123
Simpson's rule ..... 120, 123
proof. ..... 128
solving \(\mathrm{f}(\mathrm{x})=0\). ..... 23
solving \(\mathrm{f}(\mathrm{x})=5\). ..... 37
solving \(\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\) when two curves intersect. ..... 45
splines ..... 100
stencil ..... 200
trapezoid rule. ..... 123
true random number generators. ..... 144
what can drive a computer crazy . ..... 35
\(\mathrm{x}-\mathrm{x}\) doesn't always equal zero ..... 16```


[^0]:    * Kingie is pronounced KING-ee.

[^1]:    * Some people call him a wordy-birdie. Others say he's a blabbermouth.
    ** I'm omitting the units. Then I don't have to get in the controversy over metric vs. the imperial system. If you absolutely must need to know, Joe's mast is 1 dekameter tall. (= 10 meters) In British English it's deca.

[^2]:    ** Seconds, minutes, and hours are in both the metric and imperial systems.

